

 1

Genetic Algorithm Optimization of Inlet Geometry for a
Hypersonic Jet Engine with Mode Transition

Ashley E. Micks1

NASA Academy, NASA Glenn Research Center, Cleveland, OH, 44070
Massachusetts Institute of Technology, Cambridge, MA, 02139

Project Mentor:
Dr. Meng-Sing Liou2

NASA Glenn Research Center, Cleveland, OH 44070

 [Abstract] A genetic algorithm (GA) program is developed to simulate the “evolution” of
a “population” of hypersonic jet engine inlet geometries over many generations, with
“natural selection” favoring better total pressure recovery. The algorithm mimics biological
evolution to produce increasingly desirable designs with each generation. The result is an
improved design from a small-scale run, plus the functional algorithm, complete with
auxiliary scripts for use in future work such as time- and computation-intensive large-scale
runs.

Contents
Glossary…………………..…………………………………………………………………………………… 2
I. Introduction……………..…………………………………………………………………………………… 2
II. Problem Definition……..………………………………………………………………………...………… 3
III. Objective……………….…………………………………………………………………………………… 3
IV. Approach…………………………………………………………………………………………………… 3

A. Alleles………...…………………………………………………………………………………… 3
B. Chromosomes……………………………………………………………………………………… 4
C. Fitness……………………………………………………………………………………………… 4
D. Initialization…..…………………………………………………………………………………… 4
E. Parent Selection …………………………………………………………………………………… 4
F. Crossover……..…………………………………………………………………………………… 4
G. Mutation …………………………………………………………………………………………… 5
H. Elitism…………..………………………………………………………………………………… 5
I. Design Constraints………………………………………………………………………………… 5
J. Validation of the GA ……………………………………………………………………………… 5
K. Analysis Tools…………………………………………………………………………………….. 6
L. Interactions Between Programs……………………………………………………………………. 6

V. Results………………..…………………………………………………………………………………… 7
VI. Conclusion…………….…………………………………………………………………………………… 7
Appendix………………..……………………………………………………………………………………... 7

A. Algorithm Sequence……………………………………………………………………………….. 7
B. Directory Layout………...………………………………………………………………………… 9

Acknowledgments……………………………………………………………………………………………… 10
References……………………………………………………………………………………………………... 10

1 NASA Academy Research Associate, Research and Technology Directorate, M.S. 5-11.
2 Aerospace Engineer, Research and Technology Directorate, M.S. 5-11.

 2

Glossary
allele = in a GA, the value of a given design variable for a potential design
blended crossover = in a GA, a process that produces children whose alleles are weighted averages of the
 parents’ alleles
CFD = computational fluid dynamics
child = in a GA, a new individual placed into the next generation
cowl = a flap in a hypersonic inlet that closes the turbojet flow path at high speeds
chromosome = in a GA, a string of information defining an individual’s design
crossover = in a GA, the process of swapping or blending alleles between parents to form children
entrance plane = a plane just before the beginning of the inlet walls, where freestream conditions are set
fitness = in a GA, a measure of an individual’s performance, usually from the objective function
GA = genetic algorithm
generation = in a GA, the set of individuals generated by one round of reproduction, analogous to a
 generation in a species of organisms
hypersonic = speeds significantly above the speed of sound, usually Mach 5 and higher
individual = in a GA, a potential design considered by the algorithm
IPG = initial population generator
key point = a point along the inlet wall whose coordinates are used as design variables
L/IMX = Large-Scale Inlet Mode Transition, an inlet design project at NASA Glenn
objective function = a measure of a design’s performance as a function of its design parameters
Overflow = the CFD program used for this project
parent = in a GA, an individual chosen for use in generating children
population = in a GA, the set of individuals in the current generation
pt,enter = stagnation pressure at an inlet’s entrance plane
pt,exit = stagnation pressure at an inlet’s exit plane
ramp = the wall opposite the cowl in a hypersonic inlet
total pressure recovery = pt,exit/pt,enter

I. Introduction
N the aircraft design process, computational fluid dynamics (CFD) is a rapidly growing field that allows engineers
to test new designs quickly and easily from their desktop computers rather than having to spend as much time and

money on wind tunnel tests. While CFD is no substitute for experimental data, it can help engineers decide how
they want to budget their wind tunnel time, calculating optimized designs that the engineers would then want to test
and validate.
 To fulfill this function, a wealth of optimization tools has been built around and with CDF software. However,
for design problems with complicated, nonlinear objective functions and many design variables, the most common,
gradient-based optimization techniques are very limited. An objective function provides a measure of how well a
given design performs, as a function of its values for the design variables. Gradient-based methods will find the
local maximum in the objective function closest to the baseline design, but will not be able to go farther, since they
only move “uphill.”
 The emerging field of genetic algorithms (GAs) offers an alternative. Based on biological evolution, a GA’s
search is global, exploring the entire design space instead of simply climbing hills. First, a GA will generate an
initial “population” of potential designs, randomly scattered across the design space. It assigns each design—each
individual in the population—a “fitness” value by evaluating the individual using the objective function. Individuals
with higher fitness are more likely to “reproduce,” so that their traits continue to the next generation. As in
biological reproduction, crossover and mutation of “chromosomes”—which in this case are lists of design variable
values or “alleles”—bring diversity to the population so that the algorithm can consider more possibilities. Since a
GA searches from multiple points in the design space—multiple individuals in a population—parallel processing fits
in naturally with one individual per processor per generation, dramatically decreasing computing time.

I

 3

The baseline design chosen for this optimization is the Large-scale Inlet Mode Transition (L/IMX) inlet currently
undergoing tests with the Inlet and Nozzle Branch at NASA Glenn Research Center in the 1’x1’ wind tunnel. This is
an inlet designed for a hypersonic aircraft that will travel up to Mach 7 from Mach 0. Able to fly at such a range of
speeds, the L/IMX inlet is a stepping stone on the way to a single-stage to orbit vehicle.

To make flight across this range of speeds possible for an air-breathing engine, mode transition is necessary. At
high-Mach speeds, the stagnation temperature of the air is too hot for a turbojet engine to handle, so a ramjet—or for
even higher speeds, a scramjet—must be used instead. Since ramjets and scramjets don’t have meltable turbine or
compressor machinery, they can stand the high speeds, but they’re also dependent on the high speeds to compress
the air without the help of compressor blades. That means the vehicle must have both types of engines (or rocket
propellant) to reach hypersonic speeds: a turbojet for subsonic and slightly supersonic speeds and a ramjet or
scramjet for higher speeds—mode transition. The L/IMX inlet has a turbojet and a scramjet path, with cowl flaps to
open and close the different flow paths as they are needed.

II. Problem Definition
The problem of inlet geometry optimization looks at the interactions between the shape of the inlet walls, the

train of shocks down the inlet, the boundary layers, the total pressure, and ultimately how changes in inlet shape can
improve the inlet’s contribution to the engine’s efficiency as a whole. Total pressure, or stagnation pressure, reflects
how much work can be extracted from a fluid, so a loss in total pressure indicates an increase in entropy and a loss
of ability to do work. Total pressure recovery is a measure of the change in total pressure from one end of the inlet
to the other, so it represents the efficiency of the inlet.

With the goal to maximize total pressure recovery, obstacles include shock losses as well as flow separation,
since boundary layers can increase entropy and shock strength, therefore increasing shock losses in total pressure.
The inlet geometry must then be designed to keep the shocks as weak as possible and the flow separation minimal.

III. Objective
The goal of this project is to implement a GA to design an optimum geometry for the turbojet flow path of a

hypersonic jet engine inlet at Mach 4, using the L/IMX inlet as a baseline. “Optimum” is defined here as having the
maximum possible total pressure recovery, averaged across the inlet cross-section to account for non-uniform flow
at the exit plane. Represented as a function of parameters determining inlet geometry, then, this cross-sectional
average total pressure recovery is the GA’s objective function.

IV. Approach
In order to implement a GA for the purpose outlined above, key components and subroutines of the GA (alleles,

chromosomes, fitness, parent selection, crossover, mutation, and design constraints) need to be defined. Next, a plan
needs to be developed for how the different programs involved in the GA (an initial population generator, a grid
generator, a CFD program called Overflow, the GA itself) interact.

A. Alleles
Alleles are design parameter values that

define an individual, a design considered
by the GA. In this project, there are three
types of alleles contained in each
chromosome.

1) Coordinates of key points along
the inlet walls. Both the x and y
coordinates of the cowl lip were
used as design variables, but only
the y coordinates of the other key
points were varied. Those points’
x coordinates remained constant
to simplify the constraints
necessary to keep the inlet walls of
newly generated individuals from
intersecting themselves or stretching to
infinity. X is positive in the ramp-to-

Figure 1. The Large-scale Mode Transition (L/IMX) inlet.
This hypersonic inlet has two flow paths, one through a turbojet
engine and one through a scramjet engine. The cowls open and
close according to Mach number so that the air follows the path
appropriate for the current speed.

Figure 2. Geometry of the Baseline Inlet. This grid represents the
turbojet flow path geometry in the L/IMX inlet, using the xyz
coordinate system employed in the GA.

 4

cowl direction, parallel to the inlet’s entrance and exit planes, and y is defined positive in the direction of
oncoming flow perpendicular to the entrance plane. The origin is at the ramp lip (see Figure 2).

2) Bias values. This is one element of Hermite interpolation, which is used to determine the shape of the
nonlinear inlet wall sections. There is a bias value for each wall section where Hermite interpolation is
used, and it affects which direction the wall bends as it goes through the key points at either end of the wall
section.

3) Tightness values. This is another element of Hermite interpolation. Like bias values, there is one for each
Hermite-interpolated wall section. These numbers determine how sharply the wall bends.

B. Chromosomes
Each individual’s chromosome is

simply a list of its alleles. The x and y
coordinates of the cowl lip are listed first,
followed by the y coordinates of the other
key points, the bias values, and finally the
tightness values.

C. Fitness
As stated above, an individual’s fitness

equals its total pressure recovery, but that
value must also accommodate the non-
uniform flow at the exit plane due to
boundary layer effects. Total pressure is
defined as uniform everywhere on the
entrance plane, but it has different values at
different y-positions on the exit plane.
Since Overflow only calculates values for
discrete points—the intersections of
gridlines on the grid representing the inlet’s
geometry—the Riemann sums of total pressure at the entrance and exit planes are each divided by the area of the
respective plane to find average total pressures at the entrance and exit. Total pressure recovery is then the average
at the exit divided by the average at the entrance. Also, for each gridline intersection, Overflow only outputs the
nondimensionalized density, specific heat ratio, and velocity vector components, so the GA calculates
nondimensionalized total pressure from that information.

D. Initialization
The initial population is randomly distributed across the design space, with all possible values of a given allele

having equal likelihood. The L/IMX inlet is always included as one individual in this first generation, so that the
GA can take advantage of the optimization that has already gone into this baseline design.

E. Parent Selection
“Natural selection” for better fitness occurs when the individuals with higher fitness values have a better chance

of passing on their traits to the next generation. Here, Roulette Wheel selection is used, so the probability of
choosing a particular individual to become a parent is directly proportional to that individual’s fitness, and all
individuals have some chance of being selected. An individual can be selected as a parent more than once, since its
probability of selection does not change as more pairs of parents are selected.

F. Crossover
Once two parents are chosen, there is a 0.7 chance of crossover. If crossover does not occur, the parents are

simply copied into the next generation. When crossover occurs, however, some alleles will be swapped or blended
between the two parent chromosomes to form two children. Because the chromosomes are arranged by type of
allele (coordinates, bias, tightness), alleles are chosen at random to be crossed over, as opposed to the traditional
method of crossing over all alleles beyond a randomly chosen point in both parent chromosomes. This alternative
creates more diversity among children, allowing the GA to explore more of the design space. When the parent
chromosomes undergo crossover, the alleles at a given chromosome location have a 1/3 chance of being swapped
between parents, a 1/3 chance of blended crossover, and a 1/3 chance of remaining unchanged. Swapped alleles

Figure 3. Total Pressure along the Baseline Inlet. This is a side
view of the L/IMX turbojet flow path, colored according to the
nondimensionalized total pressure (or stagnation pressure) of the
flow. The coordinate axes are different from in Figure 2 because
Overflow, which calculated this flow pattern, requires the use of a
different axis system than the one used by the GA.

 5

have the same values that were present in the parent chromosomes, except that they are now on opposite
chromosomes from where they were before. Blended alleles, however, are weighted averages of the corresponding
alleles on the parent chromosomes. A random weighting factor, γ, is chosen between 0 and 1 so that

 achild1 = γaparent1 + (1-γ)aparent2 (1)
 achild2 = γaparent2 + (1-γ)aparent1 (2)

for blended crossover at chromosome location a. The process of parent selection and crossover is repeated until the
population of the next generation has been filled.

G. Mutation
Mutation happens to the children after they are produced by either crossover or by copying the parents into the

next generation. It occurs at a random allele on every child, causing that allele to change its value to any value in
the design space with equal probability. This
is another technique designed to introduce
variety into the population so that it does not
converge to one small area in the design space
without exploring the alternatives.

H. Elitism
So that the best fitness value in the

population never decreases from one
generation to the next, the best individual
from the current generation is always copied
directly into the next generation.

I. Design Constraints
There are two constraints imposed on inlet

designs generated by the GA:
1.) The inlet walls cannot intersect.
2.) The cowl lip must be upstream of the

shock wave coming off the ramp lip.
If a new individual violates a design

constraint, the process that produced the
individual (crossover, mutation, or random
generation in the case of the first generation)
is redone until a viable individual is produced.

J. Validation of the GA
Several test cases have validated that the

GA does find better designs that approach the
optimum. Initially, so that time-consuming
Overflow runs would not be necessary, a
dummy fitness function simply summed the
allele values for an individual and used the
sum as the x value in

f(x) = | cos((x-400)/25) * e-|(x-400)/400| |

 (3)

which became the fitness value. This function
is always positive, but has multiple local
maxima to test whether the GA’s search is
global, as it should be. The optimum is at 400, which is relatively central in the design space, so that the initial
population will fall on both sides of the optimum along the x-axis.

Fitness of Best Individual in Each Generation, 3 individuals per generation

0.278

0.28

0.282

0.284

0.286

0.288

0.29

0.292

0.294

0.296

0.298

0 0.5 1 1.5 2 2.5 3 3.5
generation #

Fitness of Best Individual in each Generation, 10 individuals per generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8
generation #

Figure 4. Progress of GA Optimization in Initial Tests. These two
tests used a dummy fitness function to evaluate the designs produced
by the GA without requiring CFD calculations. The performance
with small population of three individuals is very limited, but a test
with a population of ten had better results, demonstrating the validity
of the GA.

 6

The first test used three individuals per generation. With such a small population, a high-scoring individual
quickly took over the “gene pool,” making further improvement near impossible after three generations, since the
whole population had the same chromosome. The best fitness achieved this way was also not very high, 0.296 out
of an optimum 1, since the fitness function had its optimum at x=0 and all the initial designs were on one side of the
optimum on the x-axis, making it hard to converge to the absolute max. A second test used ten individuals per
generation and the fitness function in equation (3) to achieve better optimization. The best fitness value after seven
generations was 0.823 out of 1, improved from the initial population’s best score of 0.649. Slight additional
improvements in performance came from spreading the random distribution of the initial population and mutated
allele values evenly across the design space and increasing the rate of mutation to keep the population from getting
stuck at a suboptimal point in the design space for lack of diverse alleles. Additional improvements in performance
can be achieved through future work on this project, experimenting with alternative arrangements for crossover,
mutation, parent selection, and elitism.

 The calculation of fitness from CFD result files was validated using results for the baseline design. The output
was a cross-sectional average total pressure recovery of 0.4377 for the L/IMX inlet—a reasonable value.

K. Analysis Tools
For successful implementation of the GA, tools other than the GA and IPG programs developed for this project

are necessary.
1.) Overflow. This is the CFD software that calculates flow behavior for each potential design so that a fitness

value for that design can be calculated. For the purposes of this project, Overflow’s input is a Plot3D-
format 3D grid representing an inlet’s geometry and an input script specifying the boundary conditions, the
number of iterations Overflow will use to converge, and whether or not convergence will begin from
assumed uniform flow or from a “restart” file, i.e. from where a previous run of Overflow left off. The
boundary conditions used here are uniform flow perpendicular to the entrance plane at Mach 4, Reynolds
number 2.276 million (derived from L/IMX wind tunnel tests), and specific heat ratio γ=1.4, inviscid flow
along boundaries parallel to the flow leading up to the ramp and cowl lips, and viscid flow along the inlet
walls. There are no constraints on the conditions at the exit plane, which are a function of inlet geometry.
The results of 1000 iterations on the L/IMX inlet is used as an initial restart file, and then the results file
from Overflow is copied into a replacement restart file every time Overflow is run.

2.) Grid generation. A grid generation subroutine included in the GA outputs Plot3D-format 2D grid files for
the inlet designs, and then a script called “makegrid” inputs this 2D grid file and outputs a corresponding
3D grid file that matches Overflow’s input requirements. All inlet designs are approximated as 2D to
decrease the runtime of Overflow to an amount appropriate for the time allotted to this project, ten weeks.
The grid geometries input to Overflow are nominally 3D as required by the program, but they are uniform
in the third dimension. There are 300 vertical gridlines, which are parallel to the entrance and exit planes
and are concentrated near the areas where the flow is most complicated: bends in the ramp, the ramp lip,
and the cowl lip—areas where shocks and boundary layers originate. There are 100 horizontal gridlines
distributed between the top and bottom walls according to a Gaussian function, with more lines near the
walls so that calculations regarding the viscid flow near the walls are more accurate.

3.) EnSight. This is a visualization tool that reads Plot3D grid files and Overflow results files, producing
images of inlet geometries that it can color according to the flow properties, such as temperature, density,
and total pressure.

L. Interactions Between Programs
There are a few different programs and a multitude of data files and directories necessary to run the GA and

record its results. These components are spread across two machines: NASA’s mass storage machine, Lou, and the
Columbia supercomputer at NASA Ames Research Center. Columbia houses all the executable files, including
Overflow, the GA itself, and an initial population generator (IPG). Lou contains the archives: the chromosomes,
geometry grid files, Overflow flow behavior result files, and total pressure recovery values for every individual in
every generation, as well as summary files stating the best individual in each generation and generational data files
that each contain all the chromosomes from a generation so that the GA could be restarted from that generation if
necessary. Calling the GA once only steps the process forward one generation, so a batch job script manages the
whole, multigenerational process by calling the IPG at the beginning, calling the GA every generation, sending each
individual to a different processor for the CFD calculations, and moving data files around as necessary.

 7

V. Results
A final, small-scale run of the algorithm on the supercomputer yielded a design improved from the baseline.

After two generations with a population size of four, the best individual had a total pressure recovery of 0.4450,
compared to the baseline design’s total pressure recovery of 0.4377. This new design is undoubtedly suboptimal
because the population used to find it was so small and the number of generations so few, but it was necessary to
keep the scale of the run small due to time constraints.

The other products of this project are a functional GA, IPG, fitness calculation, and random number generator.
The GA and fitness calculation were validated as described previously in the section labeled, “Validation of the
GA.” These tests also validated the IPG, which needs to be called for every trial run of the algorithm, and requires
no changes between runs using the dummy fitness function and runs using the actual fitness function. The grid
generator within the GA has been validated by viewing the grids with EnSight. Images from EnSight of the designs
also verified that the IPG and GA successfully checked themselves against the design constraints, so none of the
designs from the final programs showed inlet walls intersecting in the visualization. Finally, throughout these test
runs of the algorithm as well as separate tests of the random number generator only, the random numbers have been
shown to be neither identical between runs of the program nor identical between random numbers generated in one
run of the program. Unfortunately, there was not time in the ten weeks allotted to this project to run the large-scale
optimizations for which the algorithm is intended. Such optimizations would generate upwards of a hundred
individuals per generation and require multiple days to go through the Columbia supercomputer’s job queue.

VI. Conclusion
The GA developed here does live up to the expectation for GAs to explore designs far from the baseline design,

to make use of parallel computing, and to be adaptable to adjustments in the design problem, but it required
considerable time and computing power to run. Parallel computing speeds up computations by a factor of the
number of individuals in a generation, with one processor per individual, but the shear number of designs considered
and the calculations required for each put a full-scale run of the algorithm out of scope for this ten-week project.
The largest time requirements are for the CFD calculations and the generation of a new grid for every individual,
including the hundreds of constraint-violating designs that the algorithm tries before finding working designs to
insert into the population. These time and resource limitations factor into why GAs are not more widely used.
Nonetheless, given how quickly computing power increases, the thoroughness of a genetic algorithm’s search
through the design space and the robustness of its natural-selection-inspired approach will soon be within reach for a
much wider variety of projects.

Appendix

A. Algorithm Sequence
The following is a sequential breakdown of what occurs during a run of the algorithm.

Key:
Scripts and pieces of code
Folders, directories
Files

$num_ind means “insert the number of the current individual here”
$num_gen means “insert the number of the current generation here”
$num_minus_1 is one less than $num_gen

1. The batch script calls an initial population generator called IPG. The IPG is separate from the GA so
that a random population isn’t generated every time the GA is called, and the rest of the GA doesn’t run
before the batch script gets a chance to do anything else.

2. IPG generates the initial population, outputting each new individual’s chromosome as a new fort.i file for
the ith individual. After each individual, it uses Gengrid to check that the design constraints are obeyed.

3. Gengrid (a subroutine in the IPG that takes integer arguments m and n, which set it to input fort.m and
output fort.n) reads fort.i and outputs a fort.1 grid file, replacing the fort.1 for the previous individual
each time.

 8

4. IPG reads fort.1 each time and sees if the walls intersect or if the shock comes before the cowl lip. If so, it
tries again with a different individual.

5. Once the initial population is generated, IPG outputs the entire generation’s chromosomes as individual
fort.1, fort.2, fort.3 . . . files and as one file gen.dat so the generation can be recovered by the GA.

6. Gengrid reads each fort.1, fort.2, fort.3 . . . file and outputs grid files fort.1, fort.2, fort.3 . . . in their
places.

7. The batch script copies gen.dat to gen$num_gen.dat in the summary folder on Lou.
8. The batch script copies each fort.$num_ind to fort.$num_gen in the respective inlet$num_ind folder

on Lou and to inlet.fmt in the respective inlet$num_ind folder on Columbia.
9. The batch script calls makegrid in each individual’s inlet$num_ind folder, using the 2D inlet.fmt to

create a new 3D grid.in input file for Overflow.
10. The batch script copies inlet.inp, an input file, to over.namelist, Overflow’s other input file, in each

individual’s inlet$num_ind folder.
11. The batch script calls overflow < over.namelist in each individual’s inlet$num_ind folder, running

Overflow with over.namelist as input.
12. Overflow runs each individual on a different processor. A new q.save file appears in each inlet$num_ind

folder. The inlet.inp file in each run folder has a .T. next to the “run from q.restart” statement, so
Overflow’s calculations converge starting from a previous inlet’s calculations instead of from uniform
flow, the default. q.restart was originally placed there ahead of time from the results for the baseline
design.

13. The batch script copies each q.save to q.restart in each inlet$num_ind folder.
14. The batch script copies each q.save, resid.out and grid.in to q.$num_gen, resid.$num_gen and

grid.$num_gen in the respective inlet$num_ind folder on Lou.
15. The batch script copies each q.save file to fort.$num_ind in the main directory where the GA is.
16. num_gen = num_gen + 1
17. The batch script calls the GA.
18. The GA reads the chromosomes from gen.dat into an array called oldpop
19. The GA finds a fitness for each individual using the result files now at fort.1, fort.2, fort.3. . . and

Gengrid’s gridline spacing functions to integrate total pressure without needing the grid files.
20. The GA outputs the chromosome and fitness for best individual in that generation to best.dat, which

contains a statement at the beginning of the file saying what the number of that best individual is, so that
the corresponding q and grid files can be found.

21. The GA outputs scores.dat, a list of fitnesses next to the numbers of the individuals they correspond to.
22. The GA generates a new population, again checking each new individual by replacing fort.i with the

chromosome, Gengrid generating a grid at fort.1 based on that, and then the GA checking for wall
intersections and cowl position.

23. The GA outputs the new population’s chromosomes into replacement fort.1, fort.2, fort.3. . . and gen.dat
files.

24. Gengrid (a subroutine in the GA identical to the one in the initial population generator) replaces fort.1,
fort.2, fort.3. . . with the corresponding 2D grid files.

25. The batch script copies gen.dat to gen$num_gen.dat in the summary folder on Lou.
26. The batch script copies best.dat and scores.dat to best$num_minus_1.dat and

scores$num_minus_1.dat in the summary folder on Lou.
27. The batch script copies each fort.$num_ind in the main Columbia directory to fort.$num_gen in the

respective inlet$num_ind folder on Lou and to inlet.fmt in the respective inlet$num_ind folder on
Columbia.

28. Go back up to step 9, unless the last generation you wanted to complete just had its best.dat and scores.dat
moved to Lou.

29. Now, each inlet folder on Lou should contain:
• A 3D binary Plot3D grid file for each individual (grid.1, grid.2, grid.3 . . . one for the

individual of the same number as the folder from each generation)
• A 3D binary Plot3D result file for each individual (q.1, q.2, q.3 . . .)
• A 2D ASCII Plot3D grid file for each individual (fort.1, fort.2, fort.3 . . .)

 And the summary folder on Lou should contain:
• A list of all the individuals’ chromosomes, minus their fitness values, for each generation so

that the algorithm can be restarted from that generation (gen1.dat, gen2.dat, gen3.dat . . .)

 9

• The number (index) and chromosome of the best individual in each generation, including the
fitness value (best1.dat, best2.dat . . .)

• A list of fitnesses for all the individuals in each generation, each fitness labeled with the
individual’s number (scores1.dat, scores2.dat . . . one file per generation)

• resid.1, resid.2 . . . files showing how much each individual converged

B. Directory Layout
The following is a schematic of how the directories were arranged for the algorithm across two NASA Advanced

Supercomputing (NAS) machines: Columbia and Lou. * denotes an executable file.

Home directory on Columbia
 GA*
 IPG*
 GA.f
 IPG.f
 gen.dat
 best.dat
 scores.dat
 run_batch*
 overflow
 over2.0aa
 bin
 overflow*
 makegrid*
 Fort.1

Fort.2
.
.
.

 Inlet1
 q.save
 grid.in
 q.restart
 inlet.fmt
 inlet.inp
 over.namelist
 resid.out

 Inlet2
 (same as Inlet1)
 Inlet3
 (same as Inlet1)
 .
 .
 .

Home directory on Lou
 Inlet1
 q.1
 q.2
 .
 .
 grid.1
 grid.2
 .
 .

 10

 fort.1
 fort.2
 .
 .
 resid.1
 resid.2
 .
 .

 Inlet2
 (same as Inlet1)
 Inlet3
 (same as Inlet1)
 .
 .
 .
 Summary
 gen1.dat
 gen2.dat
 .
 .
 best1.dat
 best2.dat
 .
 .
 scores1.dat
 scores2.dat
 .
 .

Acknowledgments
Special thanks to Meng-Sing Liou, May-Fun Liou, Dave Saunders, MaryJo Long-Davis, Jay Horowitz, and

Mary Vickerman for their mentorship and support. Thanks also to the Massachusetts Space Grant Consortium for
making the author’s work with NASA possible, to Dr. David Kankam for directing the NASA Glenn Academy, and
to Kyle Gaiser for his friendship and collaboration.

References
1Bourke, Paul, “Interpolation Methods,” URL: http://local.wasp.uwa.edu.au/~pbourke/other/interpolation/ [cited 16 July

2007].
2“CFD & Hypersonic Mode Transition.” A PowerPoint presentation, NASA Glenn Research Center, Research and

Technology, Inlet and Nozzle Branch, November 15 2006.
3Davis, Lawrence, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
4Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, 1989.
5Oyama, Akira, and Liou, Meng-Sing, “Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary

Algorithm,” AIAA 2001-2581, 2001.
6Walatka, Pamela P., Buning, Pieter G., Pierce, Larry, and Elson, Patricia A., PLOT3D User’s Manual, NASA Technical

Memorandum 101067, 1990.
7Whitlock, Sarah T., Boman, Erik, and Terry, Steven H., “Fortran Tutorial,” URL: http://gershwin.ens.fr/vdaniel/Doc-

Locale/Langages-Program-Scientific/Fortran/Tutorial/index.htm [cited 14 June 2007].

